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The second law of thermodynamics is used: (a) to derive the flow equations for a mag- 

netoplastic medium; (b) to investigate in detail the magnetoplastic flow of a long thick- 

walled pipe; (c) to consider the flow of a pipe acted on by a nonpenetrating field; (d) 
to find the conditions under which the “infrozen” magnetic field facilitates plastic flow. 

Magnetic fields capable of producing stresses in excess of the yield stress of metals 

have been achieved p]. If the conductivity of the metal is sufficiently high. then the 
presence of infrozen magnetic lines of force p] results in interaction between the plastic 

flow and the magnetic .field. This is what constitutes magnetoplastic flow. Magneto- 

plastic effects are manifested if the magnetic pressure is of the order of the yield stress 
of the material, i.e. if l/sI!P/x zz k. In the case of hard coppers (k zz 40 kg/mm’) the 

field intensity required is Hz300 kOe ; for hard steels (k z 100 kg/mm2 ) H ~~4450 kOe. 

1. Let us make use of the second law of thermodynamics. The law of conservation 
of the energy J+’ in some volume v can be written as 133 

dW = 6A + d,W (1.1) 

Here A is the work done by the external forces ; de W is the energy influx through 
the surface. 

The work done per unit time can be resolved [4] into the work done by the external 

surface forces cYJ / dt 

and that done by the external body forces (the Lorentz forces d,A / (31 ), 

(1.2) 

(1.3) 
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Moreover, 

(1.4) 

Here e is the internal energy per unit mass. 

Substituting relations (1.2)-(1.4) into Eq. (1.1). we obtain 

aw - 
at= $V+OG’dQj + \(tx H)vdV-$pVj(,$ + e)dQj (1.5) 

0 $ Q 

On the other hand, the total energy of a body of volume V is given by 

W = sp (~$+$,I U.6) 

to time gives us the rate of change of 

-$+,$]dV (1.7) 

Let us express the derivatives with respect to time in terms of the derivatives with 

respect to the coordinates with the aid of the mass conservation equation 

aP aPvj 
-= -- 

at azj (i 3) 
and the momentum conservation equation [Y] 

av, a04 
P at = - PVj q 

aaijo I 
+- 

&j + K 

( 

H. !zLJ&i 

J azj ) 
(i-9) 

i 

Substituting expressions (1.8). (1.9) into Ee (1.7). we obtain 

+ CP 
Here 

i; 

is the straining rate tensor. 
Combining formulas (1.5) and (1.10). we obtain 

= Vtjb$j" (l.ii) 

(Here we have made use of the relation de = TdS which is valid if we neglect the 

elastic energy. ) 
According to the second law of thermodynamics 15-71 

dS > 0 

This implies the Duhem-Clausius condition [8] 

W%” > 0 

If the medium is incompressible (ull = 0), then [9] 

o{k%,k > 0 (o,k’* = ofLo -- ‘/so,,“&k) 

(Here ai; is the stress tensor deviator.) 
This relation yields the flow equations in the case of an isotropic medium. 

(1.12) 

(1.13) 
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In fact, the Hamilton-Cayley equation implies that the most general relationship 
between the matrices VU and (Tik” in the three-dimensional case is of the form PO] 

atko = &6{1, + qvik $_ ~“ijvjk (41 qv 5 are scalaa) (1 .i4) 

Neglecting the squares of the straining rate tensor and converting to the deviators, we 

obtain the flow equation for an incompressible medium, 

% 
o* 

= qvik (1.15) 

Inequality (1.13) implies that the coefficient q is positive, i.e. that ‘1 > 0. 
The scalar 7 depends on the invariants of the stress and straining rate tensors. The 

various forms of this dependence are associated with specific variants of plasticity theory. 

For example, let us set 
(1.16) 

(The constant k is called the yield stress and characterizes the material). We then obtain 
the yield equations corresponding to the Huber-Mises plasticity condition 1111 

1/soik 0+2 = k2 (1.17) 

We note that relations (1.15) do not contain the magnetic field, i.e. that the equations 
of a magnetoplastic medium coincide with the yield equations of the ordinary theory of 

plasticity. This means that the magnetoplasticity equations postulated in 1121 are incor- 

rect. 

2. Let us formulate the basic equations of magnetoplasticity. The law of conservation 
of momentum in a magnetoplasdc medium is 

dVi 
P -&- = 2 (P is the density) (2.1) 

I 
The stress tensor uik is equal to the sum of the stress tensor of the material u1Th. and 

the magnetic field stress tensor a$ , 

atk = ail;’ + aik”y qk” = & H,H k - +- 1i28ik 
( j 

We can describe the magnetic field (as in magnetohydrodynamics) with the aid of the 
condition of infreezingof the magnetic lines of force and the condition of absence of 
magnetic charges, f3H 

-=rot(vxH), 
at 

div H = 0 (2.2) 

Let us assume that the medium is incompressible, i.e. that ~11 = 0; then t& = t& 
To these equations we must add flow condition (1.15) and plasticity condition (1.17). 
In the case of slow motions we can neglect the derivatives with respect to time and 

the inertial forces, which essentially means discarding the left sides of Eqs. (2. l), (2.2). 
This yields the equations of steady magnetoplasdcity. 

3. Now let us consider the magnetoplastic flow of a long thick-walled pipe. 
Making use of the cylindrical coordinate system (r, cp, z), we assume that all the 

quantities depend only on the coordinate r. The symmetry of the problem implies that 

all the nondiagonal components of the stress tensor of the material are equal to zero, 
i.e. that a;, = a;, = a;, = 0 (3.1) 

We also assume that the velocity components u, and V, are equal to zero, 
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v, = v, = 0 

From the incompressibility condition vIl = 0 we infer that 

conat 
v, = - r (3.2) 

This allows us to write plasticity condition (1.17) as 

(G,~” - oqpo)’ + (orro - oLZO)’ + (ho - a,,‘)’ = 6k’ (3.3) 
Flow condition (1.15) and the condition v,, = 0 imply that 

0. 
Uzz = 0, or Ufr = ‘/a (U:, + &I,) (3.4) 

Substituting (3.4) into(3.3). we obtain 
0 0 

urr - u, = *s (3.5) 

Discarding the left side of momentum conservationlaw(Z.l),taking ther-th component, 

and making use of (3. S), we obtain 

(3.6) 

4. Let us investigate the magnetoplastic flow of a pipe under various orientations of 
the magnetic field. Let a and b be the inside and outside radii of the pipe. 

First let us consider the flow of the pipe under the internal pressure exerted by an 

azimuthal magnetic field. Let the infrozen magnetic field have the components H, 
(0, H,, Hzo), and let the components of the magnetic field inside the pipe cavity 

(for r < a), which is producing the flow be H (0, H,, H,,). 
Magnetic field equations (2.2) (with the left side equal to zero) and expression (3.2) 

for the velocity give us 
rr,, (r) = H,, (a) r/u, H,, = const (4.1) 

where H,s ((I) is the value of the infrozen magnetic field at the inner surface of the 

tube (at the inside radius). The infrozen magnedc field with this q-component is pro- 

duced by a current (of constant density over the radius) in the pipe material, 

I, = & HQo(o) (4.2) 

(the t-component of the field can be produced by an external solenoid). 
We can determine the stress distribution during flow under internal pressure by inte- 

grating Eq. (3.6) under the boundary condition 

ufr (b) = 0 (4.3) 
In this case the magnetic field is defined by formulas (4.1). and the condition 

Uk (b) > 0 dictates the choice of the lower sign in Eq. (3.6) 113). Integrating yields 

o O- - rr - 
[ 

2kln ++7 Hbr’ (bz - +) 1 (4.4) 

We can now determine the components ok and oiz of the stress tensor from formulas 

(3.4), (3.5). 
The condition of continuity of the components 0 rr of-the total stress at the inner sur- 

face of the pipe( r = a) , 
0: (a - 0) = a:, (a + 0) + sff (a + 0) (4.5) 

gives us the intensity of the rntemal field corresponding to the onset of plastic flow, 

(4.6) 
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In the absence of an infrozen field the internal field producing plastic flow is given 
by the formula 

%#&? = 2k In (b f a) (4.7) 
Combining formulas (4.6) and (4.7). we see that the production of plastic flow under 

internal pressure requires a larger magnetic field ln the presence of an lnfrozen field 

than without one (the lnfrozen field “hinders” plastic flow). 
Now let us consider the magnetoplastlc flow of a pipe under external magnetic pres- 

sure. The boundary condition ln this case is 

0,; (a)= 0 (4.8) 
Let us assume for simplicity that both the lnfrozen field H, and the external fleld H 

have a g-component only, i. e. that 

H&O, Hqo, O), H (0, &, 0) 
The infrozen field is given by formula (4.1) as before. Integrating Eq. (3.6) under 

boundary condition (4.8). we obtain 

6 O- rr - - 2kJn$- + Hf$’ p (r2 - d) (4.9) 

(here we must choose the upper sign in Eq. (3.6) @.33 in order that a,& < 0 at f = a ). 

The condition of contlnulty of the components or, of the total stress at the outside 
surface of the pipe (r = b) yields the intensity of the external magnetic field corre- 

sponding to the onset of plastic flow, 

*Qs _&klIn$--y 
8n 

H$r’ (‘/2b2 - a”) (4.10) 

The magnetic fleld which produces plastic flow in the absence of an infrozen field 
is given by formula (4.7) as before. Combining Eqs. (4.10) and (4.7), we find that an 
lnfrozen magnetic field facllltates plastic flow if the pipe radii satisfy the relation 

b> jf%a (4.11) 

(i.e. if the pipe ls thick enough). It is interesting to note that plastic flow can be initi- 

ated by an infrozen field alone, provided its value is given by the formula 

pi& PI k In (b / a) 
- = 1 -(G/b*) tkl 

(4.12) 

(This phenomenon is analogous to the pinch effect in a plasma 1141. ) As we see from 
Eq, (4.12). plastic flow under an lnfrozen fleld requires a smaller field than does flow 

under a nonpenetrating fleld if condition (4.11) is fulfilled. 

Finally, let plastic flow occur in the presence of an infrozen field H, (0, Hqo (u) r/ 
/ a, 0) and an external field H(O, HV,, (a)r / a, H,). 

The stress distribution u,, ln the material is given by formula (4.9) in this case. The 
(external) axial magnetic field corresponding to the onset of plastic flow is given by the 
relation 

HfS&&!- 
ecn 0 

_ H*(b2_ (9) (4.13) 

Thus, an infrozen magnetic field always facilitates plastic flow under these circum- 

stances. 
The authors are grateful to A. I. Akhiezer and L. I. Sedov for their valuable comments. 
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